UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginia 22313-1450

WWW.USpLo.gov

liAPPLlCATION NO. [‘ _FILING bATE | F.IRST NAMED INVENTOR , | ATTORNEY DOCKET NO. | CONFIRMATION NO.]
90/011,490 - 02/1512011 RE38104 13557.112021 8186
25226 7590 02/16/2012 r] EX’.AMINER] V I
MORRISON & FOERSTER LLP
755 PAGE MILL RD o .) L :
PALO ALTO, CA 94304-1018 I _ ARTUNIT PAPER NUMBER I

DATE MAILED: 02/16/2012

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

BaddiSeatzn Commissioner for Patents
% % United States Patent and Trademark Office
P.0. Box 1450
Alexandria, VA 22313-1450

VAR VSPIO, GOV

- DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)

KING & SPALDING
1180 PEACHTREE STREET , NE

ATLANTA, GA 30309-3521

EX PARTE REEXAMINATION COMMUNICATION TRANSMITTAL FORM

REEXAMINATION CONTROL NO. 90/011,490.

PATENT NO. RE38104 ET AL..
ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified ex parte reexamination proceeding (37 CFR 1.550(f)).

Where this copy is supplied after the reply by requester, 37 CFR 1.535, or the time for filing a

reply has passed, no submission on behalf of the ex parte reexamination requester will be
acknowledged or considered (37 CFR 1.550(g)).

PTOL-465 (Rev.07-04)

Control No. Patent Under Reexamination

90/011,490 RE38104 ET AL.
Office Action in Ex Parte Reexamination g - ATt Unit
ERIC B. KISS 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
a[] Responsive to the co_mmunication(s) filed on . b[_] This action is made FINAL.
cX] A statement under 37 CFR 1.530 has not been received from the patent owner.

A shortened statutory period for response to this action is set to expire 2 month(s) from the mailing date of this letter.
Failure to respond within the period for response will result in termination- of the proceeding and issuance of an ex parte reexamination
certificate in accordance with this action. 37 CFR 1.550(d). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).

If the period for response specified above is less than thirty (30) days, a response within the statutory minimum of thirty (30) days
will be considered timely.

Part]| THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:
1. [Notice of References Cited by Examiner, PTO;892. 3. [Interview Summary, PTO-474.
2. X Information Disclosure Statement, PTO/SB/08. 4. O B

Part It SUMMARY OF ACTION
1a.
1b.

Claims 11-41 are subject to reexamination.
Claims are not subject to reexamination.
Claims ‘have been canceled in the present reexamination proceeding.

Claims are patentable and/or confirmed. ’
Claims 11-41 are rejected.
Claims are objected to.

The drawings, filed on are acceptable.

The proposed drawing correction, filed on has been (7a)[_] approved (7b)[] disapproved.
Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f).
a)J All b)[T] Some* ¢)[] None of the certified copies-have

1[] been received.

OO00OXROO0OX

2] not been received.
3[] been filed in Application No. ___ .
4[] been filed in reexamination Control No. _
5[] been received by the International Bureau in PCT application No.
* See the attachéd detailed Office action for a list of the certified copies not received.

9. [0 Since the proceeding appears to be in condition for issuance of an ex parte reexamination certificate except for formal
matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D.
11,453 0.G. 213.

10. [] Other:

cc: Requester (if third party requester)

U.S. Patent and Trademark Office .
PTOL-466 (Rev. 08-06) Office Action in Ex Parte Reexamination Part of Paper No. 20111216

Application/Control Number: 90/011,490 - Page?2
Art Unit: 3992

DETAILED ACTION

Claims 11-41 of U.S. Patent RE38,104 are subject to reexamination.

Information Disclosure Statements
The information disclosure statements filed on April 28, November 4, and November 28,
2011, have been given due consideration.

Where patents, publications, and other such items of information are submitted by a
party (patent owner or requester) in compliance with the requirements of the rules, the requisite
degree of consideration to be given to such information will be normally limited by the degree to
which the party filing the information citation has explained the content and relevance of the
information. The initials of the examiner placed adjacent to the citations on the form
PTO/SB/08A and 08B or its equivalent, without an indication td the contrary in the record, do
not signify that the information has been considered by the examiner any further than to the
extent noted above.

Patents and Printed Publications Cited in the Request

The request cites the following prior art patents and printed publications:

1. Gries, David, Compiler Construction for Digital Computers, (John Wiley & Sons,
Inc., 1971), (hereinafter “Gries”).

2. U.S. Patent 4,571,678 (Chaitin).

3. Gabriel, Richard P., Performance dnd Evaluation of Lisp Systems, (MIT Press,
1985), (hereinafter “Gabriel”).

The request proposes that the Gries reference anticipates claims 11-41 of the *104 patent

under 35 U.S.C. § 102(b), (Request at 15).

Application/Control Number: 90/011,490 Page 3
Art Unit: 3992

Claims 27-32 6f the *104 patent require generating a set of new instructions for the
program that contain numeric references resulting from invocation of a routine to resolve any
~ symbolic data references in the set of original instructions. Claims 30-32 of the *104 patent
require replacing each instruction in the program with a symbolic data reference with a new
instruction containing a numeric reference resulting from invocation of a dynamic field reference
routine to resolve the symbolic data reference.

Although Gries does disclose invocation of a routine to resolve symbolic references into
numerical references (see the rejection of clgims 11-26 and 33-41 below), Gries does not
disclose generating a new instruction set or replaci_ng instructioﬁs as a result of the resolution of -
symbolic references. Ihstead, Gries discloses reading instructions from a progrém staék P and
manipulating the symbolic references in a separate stack S in the interpreter, without changing
the program stored in P.

The request proposes that the *678 patent anticipates claims 11-41 of the 104 patent
under § 102(b), (Request at 16).

Claims 12 of the *104 patent requires interpreting intermediate form ir:structions in
accordance with a program execution control. Claims 24-26 of the *104 patent require
determining immediately prior to execution whether a bytecéde of the program contains a
symbolic data reference.

Although the 678 patent teaches the translation of high-level source code to intermediate
form object code (bytecode) and suggests eventual execution of code (see the rejection of claims

11, 13-23, and 27-41 below), its teachings are directed to compilers rather than interpreters.

Application/Control Number: 90/011,490 Page 4
Art Unit: 3992

- The request proposes that the Gabriel reference anticipates clafms 11-41 of the 104
patent under § 102(b), (Request at 16).

However, upon review of the claim chart provided with the request appears to
inconsistently construe the disclosure of Gabriel and fails to provide adequate evidence to
support a rejection of any claim of the *104 patent based on Gabriel . Specifically, the request
construes the interpreted code of Gabriel as corresponding to the claimed intermediate form
object code, but points to a portion of Gabriel discussing analysis of function calls from within
compiled (not interpreted) code for the feature of resolving symbolic references, (Exhibit 7, p. 1).
The examiner disagrees with the requester's conclusion that the sentence, “Calls from compiled
functions involve either the same lookup followed by a transfer of control to the code or a
simple, machine-specific subroutine call; usually a Lisp will attempt to transform the‘former into
the latter once the function has been looked up,” means “[U]sualfy a Lisp will attempt to
transform the [interpreted call] into the [a compiled call] once the function has been looked up,”
(id)). Instead, a more reasonable reading appears to be that a Lisp will attempt fo transform the
lookup followed ~by tfansfer of control to the code into a machine-specific subroutiﬁe call. This
would be consistent with the discussion of how transfer tables are updated on pp. 51-52 of
Gabriel. Additionally, although the reqﬁest characterizes the link smashing of Gabriel asr
replacing the original instruction, it appears that link smashing involves only changing the
address stored in the transfer table entry, i.e., from a pointer to QLINKER to a pointer to the

binary code. See Gabriel at 51-52.

Application/Control Number: 90/011,490 Page 5
Art Unit: 3992

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the
basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(b) the invention was patented or described in a printed publication in this or a foreign

country or in public use or on sale in this country, more than one year prior to the date of
application for patent in the United States.

Claims 11-26 and 33-41are rejected under 35 U.S.C. 102(b) as being anticipated by
Gries.

Pagés 328-35 (Ch 16. Interpreters) form the most pertinent section of Gries for the
purpose of this rejection. Note, however, that Gries refers to previous sections for more detailed
descriptions of various subject matter and examples necessary to understand the discussion in
this section. Pages 213-43 (Chapters 9 and 10) describe the organization and content of symbol
tables. Pages 245-52 (Chapter 11).describe Polish nofation and how it can be represented inside
a computer. Compare Gries Fig. 11.1 (source program), Fig. 11.4 (Polish form), and Fig. 11.5 .
(internal representation). Further, Gries describes chapters 9, 10, 11, and 16 as forming a
sequential unit. Gries at ix.

Accordingly, although portions of multiple chapters of the Gries reference are cited in the
rejection below, care has been taken to ensure that the cited elements are still “arranged as in the
claim” as required for anticipation. Net Money IN. Inc. v. Verisign, Inc., 545 F.3d 1359, 1369
(Fed. Cir. 2008).

The following claim chart provides a comparison of the features of Gries with the

features of the claimed invention.

Application/Control Number: 90/011,490 Page 6

Art Unit: 3992

17104 Patent

Gries

11. An apparatus comprising:

a memory containing intermediate
form object code constituted by a
set of instructions, certain of said
instructions containing one or more
symbolic references; and

a processor configured to execute
said instructions containing one or
more symbolic references by
determining a numerical reference
corresponding to said symbolic
reference, storing said numerical
references, and obtaining data in
accordance to said numerical
references.

“We use the term interpreter for a program which
performs two functions:

1. Translates a source program written in the source
language (e.g. ALGOL) into an internal form; and

2. Executes (interprets, or simulates) the program in this
internal form.

“The first part of the interpreter is like the first part of a

| multi-pass compiler, and we will call it the ‘compiler’.

The internal form into which it translates should be
designed to make the second part, the interpréter proper,
as efficient as possible. Polish notation is often used here,
and this is what we will describe." Gries at 328.

“Internally, the Polish form of the source program is
stored in an integer array P. During interpretation, an
integer p, initially 1, contains the index in P of the symbol
currently being processed. Thus, p is an 'instruction
counter'. As described in section 11.2, to execute the
Polish program we use a stack S with counter i. Initially,
the stack is empty (i =0).” Id.

The Polish notation internal form disclosed by Gries
corresponds to the claimed intermediate form object code.

Gries further describes symbolic references in the
intermediate form object code. For example, in the Polish
form code in Fig. 11.4, 1, J, A, K, and L are symbolic
references, and in the internal representation of Fig. 11.4,
they are designated by two fields: an indicator (the integer
‘2°) that the word contains an identifier and its symbol
table entry addresses. See Gries at 251-52 and 328-29.

The identifiers disclosed by Gries, represented in the
intermediate form code by an identifier substatement and
a symbol table entry address, correspond to the claimed
symbolic references.

Gries discloses the execution of such code containing
symbolic references as follows:

Application/Control Number: 90/011,490 | Page 7

Art Unit: 3992

’104 Patent

Gries

“Each stack element needs two fields, which we call
KIND and VALUE. S(i).KIND is 1, 2 or 3, depending on
whether S(1).VALUE is an integer value, a symbol table
entry address, or the address of a variable. Each operator,
when executed, must check its operands on the stack and
transform them to the correct KIND, before executing its
operation.

“For example, the operation * would perform the
following steps (its operands are in S(i) and S(i-1):

1. If S(G).KIND =2, then put the value of the variable
described by the symbol table entry at the address
contained in S(i).VALUE, into S(i). VALUE. If
S(1).KIND = 3, then put the value of the variable at
address S(i).VALUE, into S(i). VALUE.

2. Perform the same operation as in (1), but on stack
element S(i-1).)
3. S(i-1).VALUE := S(i-1). VALUE*S(1). VALUE; S(i-
1).KIND := 1. (Perform the multiplication and fix the
kind.)

4.1:=i-1. (Adjust the stack).” Gries at 330 (emphasis
added). /

In order to obtain the value of the variable as discussed
above, the interpreter must determine the runtime address
of the corresponding data by referring to the symbol table
entry, thus resolving the symbolic references by
determining a numerical reference, i.e., the variable’s

‘address in memory. This numerical reference must be

stored in some form of memory, e.g., RAM or a processor
register, in order to be available for use by the interpreter.

| The storage and execution described by Gries inherently

require memory and a processor to realize the disclosed
functionality.

The step of resolving symbolic references has already
been addressed as set forth above. However, Gries also
discloses an alternative more efficient embodiment of the
interpreter that lets the compiler insert conversion
operators into the Polish notation, which more explicitly
describe the step of resolving symbolic references:

Application/Control Number: 90/011,490

Art Unit: 3992

Page 8

’104 Patent

Gries

“Instead, we now allow three possible numbers 2, 3 and 4
as the first location to tell us how to process the identifier,
as follows: :

2. Put the pointer to the symbol table entry on the stack.
We represent this symbolically by P:I.

3. Put the address of the variable on the stack. We
represent this by A:L

4. Put the value of the variable described by the symbol
table entry on the stack. We represent this by V:I

“For example, the statement C := B+A(I) (CBI1 A SUBS
+ := in Polish form) would appear in this more explicit
notation as:

A:C We need C’s address to store into

V:B B’s value, for addition

V:I T’s value (the subscript)

P:A Pointer to array A’s symbol table entry

SUBS This produces the address of A(I) on the stack....”
Gries at 331.

12. A computer-readable medium
containing instructions for
controlling a data processing
system to perform a method for
interpreting intermediate form
object code comprised of
instructions, certain of said
instructions containing one or more
symbolic references, said method
comprising the steps of:

interpreting said instructions in
accordance with a program
execution control; and

resolving a symbolic reference in an
instruction being interpreted, said
step of resolving said symbolic -
reference including the substeps of:
determining a numerical reference
corresponding to said symbolic
reference, and storing said
numerical reference in a memory.

See the discussion of claim 11 above.

Gries discloses the interpreter as an executable program
(which in turn executes the internal form program), i.e.,
interpreting said instructions in accordance with a
program execution control. A computer-readable
medium, e.g., a memory, is inherent in realizing the
disclosed functionality. See Gries at 328.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 9

’104 Patent

Gries

13. A computer-implemented
method for executing instructions,
certain of said instructions
containing one or more symbolic
references, said method comprising
the steps of:

resolving a symbolic reference in an
instruction, said step of resolving
said symbolic reference including
the substeps of: determining a
numerical reference corresponding
to said symbolic reference, and
storing said numerical reference in
a memory.

See the discussion of claim 11 above, wherein such
method steps have already been addressed.

14. The method of claim 13,
wherein said substep of storing said
numerical reference comprises the
substep of replacing said symbolic
reference with said numerical
reference.

See the discussion of claim 13 above.

Gries further discloses replacing said symbolic reference
with said numerical reference. See, e.g., Gries at 331
(illustrating processing an identifier, 'C,' by putting C's
address on the stack prior to processing an assignment
operator).

15. The method of claim 13,
wherein said step of resolving said
symbolic reference further
comprises the substep of executing
said instruction containing said
symbolic reference using the stored
numerical reference.

See the discussion of claim 13 above.

16. The method of claim 13,
wherein said step of resolving said
symbolic reference further
comprises the substep of advancing
program execution control after said
substep of executing said
instruction containing said symbolic
reference.

See the discussion of claim 13 above.

Gries further discloses advancing program execution
control after said substep of executing said instruction
containing said symbolic reference. See Gries at 328-29
(describing the use of integer p as an instruction counter
and incrementing p after processing a symbol).

17. In a computer system

See the discussion of claim 11 above.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 10

’104 Patent

Gries

comprising a program, a method for
executing said program comprising
the steps of:

receiving intermediate form object
code for said program with
symbolic data references in certain
instructions of said intermediate
form object code; and

converting the instructions of the
intermediate form object code.
having symbolic data references,
said converting step comprising the
substeps of: resolving said symbolic
references to corresponding
numerical references, storing said
numerical references, and obtaining
data in accordance to said
numerical references.’

Gries further discloses converting the instructions of the
intermediate form object code having symbolic data
references by resolving the symbolic references to
corresponding numerical references, storing the numerical
reference, and obtaining data in accordance to the
numerical reference. See, e.g., Gries at 331 (illustrating
processing an identifier, 'C,' by putting C's address on the
stack prior to processing an assignment operator). See
also Gries at 330 (as discussed above).

18. A computer-implemented
method for executing program
operations, each operation being
comprised of a set of instructions,
certain of said instructions
containing one or more symbolic
references, said method comprising
the steps of:

receiving a set of instructions
reflecting an operation; and

performing the operation
corresponding to the received set of
instructions,

wherein at least one of said
symbolic references is resolved by
determining a numerical reference
corresponding to said symbolic
reference, storing said numerical
reference, and obtaining data in

See the discussion of claim 11 above.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 11

’104 Patent

Gries

accordance to said stored numerical
reference.

19. A memory for use in executing
a program by a processor, the
memory comprising:

intermediate form code containing
symbolic field references associated
with an intermediate representation
of source code for the program,

the intermediate représentation
having been generated by lexically
analyzing the source code and
parsing output of said lexical
analysis, and

wherein the symbolic field
references are resolved by
determining a numerical reference
corresponding to said symbolic
reference, and storing said
numerical reference in a memory.

See the discussion of claim 11 above.

Gries further discloses the intermediate representation
having been generated by lexically analyzing the source
code and parsing output of said lexical analysis:

“We use the term interpreter for a program which
performs two functions:

1. Translates a source program written in the source
language (e.g. ALGOL) into an internal form; and

2. Executes (interprets, or simulates) the program in this
internal form. :

“The first part of the interpreter is like the first part of a
multi-pass compiler, and we will call it the ‘compiler’.
The internal form into which it translates should be
designed to make the second part, the interpreter proper,
as efficient as possible. Polish notation is often used here,
and this is what we will describe." Gries at 328.

See also Gries at 4-6 (describing the analysis portion of
the compiler, including the scanner, i.e., lexical analyzer,
and syntax analyzer, i.e., parser, used to translate source
code into an internal representation such as Polish
notation).

Gries discloses the interpreter as an executable program
(which in turn executes the internal form program), i.e.,
interpreting said instructions in accordance with a
program execution control. A computer-readable
medium, e.g., a memory, is inherent in realizing the
disclosed functionality. See Gries at 328.

20. A computer-implemented
method for executing a compiled
program containing instructions in
an intermediate form code, at least
one of the instructions containing a
symbolic reference, said method
comprising the steps of:

See the discussion of ¢claim 11 above.

Gries further discloses performing an operation in
accordance with the instruction and data obtained in
accordance with the numerical reference without
recompiling the program or any portion thereof. See, e.g.,
Gries at 330-32 (describing interpretation time conversion

Application/Control Number: 90/011,490 : Page 12

Art Unit: 3992

’104 Patent _

Gries

resolving the symbolic reference in
the instruction by determining a
numerical reference corresponding
to the symbolic reference; and

performing an operation in
accordance with the instruction and
data obtained in accordance with
the numerical reference without
recompiling the program or any
-portion thereof.

of symbolic references to perform associated operations).

21. A memory encoded with a
compiled program, the memory
comprising:

intermediate form code containing
symbolic field references associated
with an intermediate representation
of source code for the program,

the intermediate representation
having been generated by lexically
analyzing the source code and
parsing output of said lexical
analysis,

such that when the program is
executed by a processor each
symbolic field reference is resolved
by determining a numerical
reference corresponding to the
symbolic field reference and data is
obtained in accordance with the
numerical reference without
recompiling the program or any
portion thereof.

See the discussion of claims 19 and 20 above.

22. An apparatus comprising:

a memory containing a compiled
program in intermediate form

See the discussion of claim 20 above.

Application/Control Number: 90/011,490 ' Page 13
Art Unit: 3992

*104 Patent Gries

object code constituted by a set of
instructions, at least one of the
instructions containing a symbolic
reference; and

a processor configured to execute
the instruction by determining a
numerical reference corresponding
to the symbolic reference, and
performing an operation in
accordance with the instruction and
data obtained in accordance with
the numerical reference without
recompiling the program or any
portion thereof.

23. A computer-readable medium See the discussion of claim 20 above.
containing instructions for

controlling a data processing Gries discloses the interpreter as an executable program
system to perform a method for (which in turn executes the internal form program), i.e.,
interpreting a compiled program in | interpreting said instructions in accordance with a
intermediate form object code program execution control. A computer-readable
comprised of instructions, at least medium, e.g., a memory, is inherent in realizing the

one of the instructions containing a | disclosed functionality. See Gries at 328.
symbolic reference, said method ‘
comprising the steps of:

‘resolving the symbolic reference in
the instruction by determining a
numerical reference corresponding
to the symbolic reference; and

performing an operation in
accordance with the instruction and
data obtained in accordance with
the numerical reference without
recompiling the program or any
portion thereof.

24. A computer-implemented See the discussion of claim 11 above.
method for executing a program ’
comprised of bytecodes, the method | The Polish notation internal form disclosed by Gries

comprising: corresponds to the claimed program comprised of

Application/Control Number: 90/011,490

Art Unit: 3992

Page 14

’104 Patent

Gries

determining immediately prior to
execution whether a bytecode of the
program contains a symbolic data
reference;

when it is determined that the
bytecode of the program contains a
'| symbolic data reference, invoking a
dynamic field reference routine to
resolve the symbolic data reference;
and

executing thereafter the bytecode
using stored data located using a
numeric reference resulting from
the resolution of the symbolic
reference.

bytecodes. E.g., Gries at 328.

Gries further discloses determining immediate prior to
execution whether a bytecode of the program contains a
symbolic reference:

“Each stack element needs two fields, which we call
KIND and VALUE. S(i).KIND is 1, 2 or 3, depending on
whether S(i). VALUE is an integer value, a symbol table
entry address, or the address of a variable. Each operator,
when executed, must check its operands on the stack and
transform them to the correct KIND, before executing its
operation.” Gries at 330.

Gries further discloses invoking a dynamic field reference
routine to resolve the symbolic data reference and
executing thereafter the bytecode using stored data located
using a numeric reference resulting from the resolution of
the symbolic reference:

“For example, the operation * would perform the
following steps (its operands are in S(i) and S(i-1):

1. If S(1).KIND = 2. then put the value of the variable
described by the symbol table entry at the address
contained in S(i).VALUE, into S(i). VALUE. If
S(i).KIND = 3, then put the value of the variable at
address S(i).VALUE, into S(i).VALUE.

2. Perform the same operation as in (1), but on stack
element S(i-1).

3. S(i-1).VALUE := S(i-1).VALUE*S(i). VALUE: S(i-
1).KIND := 1. (Perform the multiplication and fix the
kind.)

4.1 :=1i-1. (Adjust the stack).” Gries at 330 (emphasis
added). '

In order to obtain the value of the vartable as discussed
above, the interpreter must determine the runtime address
of the corresponding data by referring to the symbol table
entry, thus resolving the symbolic references by
determining a numerical reference, i.e., the variable’s
address in memory. This numerical reference must be
stored in some form of memory, €.g., RAM or a processor
register, in order to be available for use by the interpreter.

Application/Control Number: 90/011,490 Page 15
Art Unit: 3992

’104 Patent Gries

The storage and execution described by Gries inherently
require memory and a processor to realize the disclosed
functionality.

25. A data processing system, See the discussion of claim 24 above.
comprising:

a processor; and

a memory comprising a program
comprised of bytecodes and
instructions for causing the
processor to '

(i) determine immediately prior to
execution of the program whether a
bytecode of the program contains a
symbolic data reference,

(i1) when it is determined that the
bytecode of the program contains a
symbolic data reference, invoke a
dynamic field reference routine to
resolve the symbolic

data reference, and

(iii) execute thereafter the bytecode
using stored data located using a
numeric reference resulting from
the resolution of the symbolic
reference.

26. A computer program product See the discussion of claim 24 above.
containing instructions for causing
a Gries discloses the interpreter as an executable program
computer to perform a method for (which in turn executes the internal form program), i.e.,
executing a program comprised of | interpreting said instructions in accordance with a
bytecodes, the method comprising: | program execution control. A computer program product,
e.g., a memory containing instructions, is inherent in .
determining immediately prior to realizing the disclosed functionality. See Gries at 328.
execution whether a bytecode of the
rogram contains a symbolic data

Application/Control Number: 90/011,490 Page 16
Art Unit: 3992 '

| 7104 Patent Gries
reference;

when it is determined that the
bytecode of the program contains a
symbolic data reference, invoking a
dynamic field reference routine to

resolve the symbolic data reference;

and

executing thereafter the bytecode
using stored data located using a
numeric reference resulting from
the resolution of the symbolic
reference.

33. A computer-implemented
method, comprising:

receiving a program with a set of
instructions written in an
intermediate form code;

analyzing each instruction of the
program to determine whether the
instruction contains a symbolic
reference to a data object; and

executing the program, wherein
when it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used
thereafter to perform an operation
corresponding to that instruction.

See the discussion of claim 11 above.

Gries further discloses analyzing each instruction to
determine whether the instruction contains a symbolic
reference to a data object:

“Each stack element needs two fields, which we call
KIND and VALUE. S(i).KIND is 1, 2 or 3, depending on
whether S(i).VALUE is an integer value, a symbol table
entry address, or the address of a variable. Each operator,
when executed, must check its operands on the stack and
transform them to the correct KIND, before executing its
operation.” Gries at 330.

Gries further discloses using data from a storage location
identified by a numeric reference corresponding to the
symbolic reference thereafter to perform an operation
corresponding to that instruction:

“For example, the operation * would perform the
following steps (its operands are in S(i) and S(i-1):

1. If SG).KIND = 2, then put the value of the variable
described by the symbol table entry at the addréss
contained in S(i). VALUE, into S(1).VALUE. If
S(i).KIND = 3, then put the value of the variable at
address S(i). VALUE, into S(i).VALUE.

2. Perform the same operation as in (1), but on stack
element S(i-1).

Application/Control Number: 90/011,490

Art Unit: 3992

Page 17

’104 Patent

Gries

3. S(-1).VALUE := S(i-1).VALUE*S(i). VALUE: S(i-
1).KIND := 1. (Perform the multiplication and fix the
kind.) .
4.1:=1i-1. (Adjust the stack).” Gries at 330 (emphasis
added).

In order to obtain the value of the variable as discussed
above, the interpreter must determine the runtime address
of the corresponding data by referring to the symbol table
entry, thus resolving the symbolic references by
determining a numerical reference, i.e., the variable’s
address in memory. This numerical reference must be
stored in some form of memory, e.g., RAM or a processor
register, in order to be available for use by the interpreter.

The storage and execution described by Gries inherently
require memory and a processor to realize the disclosed
functionality.

34. A data processing system,
comprising:

a processor; and

a memory comprising a control
program for causing the processor
to

(1) receive a program with a set of
instructions written in an
intermediate form code,

(i1) analyze each instruction of the
program to determine whether the
instruction contains a-symbolic
reference to a data object, and (iii)
execute the program, wherein when
it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used

See the discussion of claim 33 above.

Application/Control Number: 90/011,490 Page 18
Art Unit: 3992

’104 Patent Gries

thereafter to perform an operation
corresponding to that instruction.

35. A computer program product See the discussion of claim 33 above.

containing control instructions for

causing a computer to perform a Gries discloses the interpreter as an executable program

method, the method comprising: (which in turn executes the internal form program), i.e.,
interpreting said instructions in accordance with a

receiving a program with a set of program execution control. A computer program product,

instructions written in an e.g., a memory containing instructions, is inherent in

intermediate form code; realizing the disclosed functionality. See Gries at 328.

analyzing each instruction of the
program to determine whether the
instruction contains a symbolic
reference to a data object; and

executing the program, wherein
when it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used
thereafter to perform an operation
corresponding to that instruction.

36. A computer-implemented See the discussion of claim 24 above.
method for executing a program
comprised of bytecodes, the method
comprising:

determining whether a bytecode of
the program contains a symbolic
reference;

| when it is determined that the
bytecode contains a symbolic
reference, invoking a dynamic field
reference routine to resolve the
symbolic reference; and

erforming an operation identified

Application/Control Number: 90/011,490 Page 19
Art Unit: 3992 |

’104 Patent Gries

by the bytecode thereafter using
data from a storage location
identified by a numeric reference
resulting from the invocation of the
dynamic field reference routine.

37. A data processing system, See the discussion of claim 24 above.
| comprising:

a processor; and

a memory comprising a program
comprised of bytecodes and
instructions for causing the
processor to

(i) determine whether a bytecode of
the program contains a symbolic
reference,

(ii) when it is determined that the
bytecode contains a symbolic
reference, invoke a dynamic field
reference routine to resolve the
symbolic reference, and

(iii) perform an operation identified -
by the bytecode thereafter using
data from a storage location
identified by a numeric reference
resulting from the invocation of the
dynamic field reference routine.

38. A computer program product See the discussion of claim 24 above.
containing instructions for causing
a computer to perform a method for | Gries discloses the interpreter as an executable program
executing a program comprised of | (which in turn executes the internal form program), i.e.,
bytecodes, the method comprising: | interpreting said instructions in accordance with a
program execution control. A computer program product,
determining whether a bytecode of | e.g., a memory containing instructions, is inherent in
the program contains a symbolic realizing the disclosed functionality. See Gries at 328.
reference;)

Application/Control Number: 90/011,490 | | Page 20
“Art Unit: 3992

’104 Patent Gries

when it is determined that the
bytecode contains a symbolic
reference, invoking a dynamic field
reference routine to resolve the
symbolic reference; and

performing an operation identified
by the bytecode thereafter using
data from a storage location
identified by a numeric reference
resulting from the invocation of the
dynamic field reference routine.

39. A computer-implemented See the discussion of claim 33 above.
method comprising: .
Gries further discloses the intermediate form code being
receiving a program formed of compiled from source code. Gries at 328.

instructions written in an
intermediate form code compiled
from source code; '

analyzing each instruction to
determine whether it contains a
symbolic field reference; and

executing the program by
performing an operation identified
by each instruction, wherein data
from a storage location identified
by a numeric reference is thereafter
used for the operation when the
instruction contains a symbolic
field reference, the numeric
reference having been resolved 7
from the symbolic field reference.

40. A data processing system, See the discussion of claim 39 above.
comprising:
The storage and execution described by Gries inherently
a processor; and require memory and a processor to realize the disclosed
functionality.

a memory comprising a control
program for causing the processor

Application/Control Number: 90/011,490 Page 21
Art Unit: 3992

’104 Patent , Gries

to

(i) receive a program formed of
instructions written in an
intermediate form code compiled
from source code,

(ii) analyze each instruction to
determine whether it contains a
symbolic field reference, and

(iii) execute the program by
performing an operation identified
by each instruction, wherein data
from a storage location identified
by a numeric reference is thereafter
used for the operation when the
instruction contains a symbolic
field reference, the numeric
reference having been resolved
from the symbolic field reference.

41. A computer program product See the discussion of claim 39 above.

containing control instructions for

causing a computer to perform a Gries discloses the interpreter as an executable program
method, the method comprising: (which in turn executes the internal form program), i.e.,

' interpreting said instructions in accordance with a
receiving a program formed of program execution control. A computer program product,
instructions written in an e.g., a memory containing instructions, is inherent in
intermediate form code compiled realizing the disclosed functionality. See Gries at 328.

from source code;

analyzing each instruction to
determine whether it contains a
symbolic field reference; and

executing the program by
performing an operation identified
by each instruction, wherein data
from a storage location identified
by a numeric reference is used
thereafter for the operation when
the instruction contains a symbolic

Application/Control Number: 90/011,490 Page 22
Art Unit: 3992 '

’104 Patent Gries

field reference, the numeric
reference having been resolved
from the symbolic field reference.

Application/Control Number: 90/011,490 Page 23

Art Unit: 3992

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed ordescribed as set forth in
section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are
such that the subject matter as a whole would have been obvious at the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the
manner in which the invention was made.

Claims 11, 13-23, and 27-41 are rejected under 35 U.S.C. 103(a) as being unpatentable

over the Chaitin *678 patent.

The following claim chart provides a comparison of the features of the Chaitin *678

patent with the features of the claimed invention.

’104 Patent

’678 Patent

11. An apparatus comprising:

a memory containing intermediate
form object code constituted by a
set of instructions, certain of said
instructions containing one or more
symbolic references; and

a processor configured to execute
said instructions containing one or
more symbolic references by
determining a numerical reference
corresponding to said symbolic
reference, storing said numerical
references, and obtaining data in
accordance to said numerical
references.

“The register allocation phase of the compiler stands
between the optimization phase and the final code
assembly and emission phase. When the intermediate or
internal language (IL) enters register allocation, it 1s
written assuming a hypothetical target machine having an
unlimited number of high-speed general-purpose CPU
registers.” *678 patent at col. 4, lines 49-55.

The intermediate language code of the 678 patent
corresponds to the claimed intermediate form object code..

The instructions in the intermediate form code contain
symbolic registers, which correspond to the claimed
symbolic references:

“It is the responsibility of the register allocation phase to
map the unlimited number of symbolic registers assumed
during optimization into the 32 registers which are
actually present in the CPU.” ’678 patent at col. 4, lines
57-61.

A set of new instructions is generated (and stored) that
contains real machine register numbers, which
correspond to the claimed numeric references:

Application/Control Number: 90/011,490 Page 24

Art Unit: 3992

’104 Patent

’678 Patent

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in the input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.’”
’678 patent at col. 9, lines 47-52. -

The *678 patent teaches that the output of the register
allocation process is modified intermediate language code,
which may be subsequently passed to the final code
assembly and emission phase of the optimizing compiler
to produce object code. See, e.g., 678 patent at col. 4,
lines 49-51; col. 4, lines 5-11 col. 17, lines 21-31.

The 678 patent further teaches that the purpose of an
optimizing compiler is “to facilitate the use of very high
level source program languages on the input side and to,
hopefully, assure that the object program produced by the
compiler will run on the target CPU in the most efficient
manner possible. 678 patent at col. 1, lines 29-36.

The ’678 patent further teaches that real machine registers
are used to obtain data during program execution. See,
e.g., '678 patent at col. 1, lines 36-43; col. 4, lines 12-33.

In view of the teachings and expressed purpose cited
above, it would have been obvious to one of ordinary skill
in the art at the time of invention to execute the program
using the set of new instructions, thereby obtaining data in
accordance to the numerical references, in order to
meaningfully enjoy the benefits of the optimized output.

The optimizing compiler disclosed in the *678 patent is
computer-implemented, and the compilation process and
execution of the generated code, as discussed above,
inherently require a processor and memory to realize the
described functionality. See, e.g., *678 patent at col. 16,
line 62, through col. 17, line 11.

13. A computer-implemented
method for executing instructions,

See the discussion of claim 11 above, wherein such

method steps have already been addressed.

Application/Control Number: 90/011,490

Art Unit; 3992

Page 25

’104 Patent

’678 Patent

certain of said instructions
containing one or more symbolic
references, said method comprising
the steps of:

resolving a symbolic reference in an
instruction, said step of resolving
said symbolic reference including
the substeps of: determining a
numerical reference corresponding
to said symbolic reference, and
storing said numerical reference in
a memory.

For reasons stated above, such a claim also would have
been obvious.

14. The method of claim 13,
wherein said substep of storing said
numerical reference comprises the
substep of replacing said symbolic
reference with said numerical
reference.

See the discussion of claim 13 above.

As discussed above, the *678 patent teaches replacing said
symbolic reference with said numerical reference:

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in thé input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.””
’678 patent at col. 9, lines 47-52.

For reasons stated above, such a claim also would have

1 been obvious.

15. The method of claim 13,
wherein said step of resolving said
symbolic reference further
comprises the substep of executing
said instruction containing said
symbolic reference using the stored
numerical reference.

See the discussion of claim 13 above.

For reasons stated above, such a claim also would have
been obvious.

16. The method of claim 13,
wherein said step of resolving said
symbolic reference further
comprises the substep of advancing
program execution control after said
substep of executing said

See the discussion of claim 13 above.

As discussed above, the '678 patent teaches executing an
object program produced by a compiler. *678 patent at
col. 1, lines 29-36. The nature of the data-flow analysis
performed on the IL program implies conventional

Application/Control Number: 90/011,490

Art Unit: 3992

’104 Patent

’678 Patent

instruction containing said symbolic
reference.

execution of the program with execution control
advancing after each instruction executed. See "678
patent at col. 5, lines 13-20.

For reasons stated above, such a claim also would have
been obvious.

17. In a computer system
comprising a program, a method for
executing said program comprising
the steps of:

receiving intermediate form object
code for said program with
symbolic data references in certain
instructions of said intermediate
form object code; and

converting the instructions of the
intermediate form object code
having symbolic data references,
said converting step comprising the
substeps of: resolving said symbolic
references to corresponding
numerical references, storing said
‘numerical references, and obtaining
data in accordance to said
numerical references.

See the discussion of claim 11 above.

As discussed above, the 678 patent teaches converting
the instructions of the intermediate form object code
having symbolic data references by resolving said
symbolic references to corresponding numerical
references and storing said numerical references: -

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in the input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.’”
’678 patent at col. 9, lines 47-52.

For reasons stated above, such a claim also would have
been obvious.

18. A computer-implemented
method for executing program
operations, each operation being
comprised of a set of instructions,
certain of said instructions
‘containing one or more symbolic
references, said method comprising
the steps of:

receiving a set of instructions
reflecting an operation; and

performing the operation
corresponding to the received set of

See the discussion of ¢claim 11 above.

For reasons stated above, such a claim also would have
been obvious.

Page 26

Application/Control Number: 90/011,490

Art Unit: 3992

Page 27

’104 Patent

’678 Patent

instructions,

wherein at least one of said
symbolic references is resolved by
determining a numerical reference
corresponding to said symbolic
reference, storing said numerical
reference, and obtaining data in
accordance to said stored numerical
reference.

19. A memory for use in executing
a program by a processor, the
memory comprising:

intermediate form code containing
symbolic field references associated
with an intermediate representation
of source code for the program,

the intermediate representation
having been generated by lexically
analyzing the source code and
parsing output of said lexical
analysis, and

wherein the symbolic field
references are resolved by
determining a numerical reference
corresponding to said symbolic
reference, and storing said
numerical reference in a memory.

See the discussion of claim 11 above.

As discussed above, the 678 patent teaches resolving said
symbolic references to corresponding numerical
references and storing said numerical references:

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in the input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.””
’678 patent at col. 9, lines 47-52.

The >678 patent further teaches the intermediate
representation having been generated by lexically
analyzing the source code and parsing output of said
lexical analysis. Specifically, the *678 patent teaches,
within an optimizing compiler that converts a high-level
source language program into a machine-executable
program, a register allocation phase that stands between
the optimization phase and the final code assembly and
emission phase, i.e., after the lexical analysis and parsing
phases as well, and receives the intermediate code as its
input. See *678 patent at col. 4, lines 38-55. The *678
patent further teaches the intermediate language utilized
being of a type that is conventional to optimizing
compilers. *678 patent at col. 5, lines 22-30; col. 16, line
62, through col. 17, line 9.

For reasons stated above, such a claim also would have
been obvious.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 28

’104 Patent

’678 Patent

20. A computer-implemented
method for executing a compiled
program containing instructions in
an intermediate form code, at least
one of the instructions containing a
symbolic reference, said method
comprising the steps of:

resolving the symbolic reference in
the instruction by determining a
numerical reference corresponding
to the symbolic reference; and

performing an operation in
accordance with the instruction and
data obtained in accordance with
the numerical reference without
recompiling the program or any
portion thereof.

See the discussion of claim 11.

The performing an operation in accordance with the.
instruction and data obtained in accordance with the
numerical reference would take place once the compiled
program of the 678 patent is executed and any register
assignments and spill code would be used in the form
outputted by the final assembly and emission phase, i.e.,
after all compilation is finished. See *678 patent at col. 4,
line 49, through col. 5, line 4.

For reasons stated above, such a claim also would have
been obvious.

21. A memory encoded with a
compiled program, the memory
comprising:

intermediate form code containing -
symbolic field references associated
with an intermediate representation

of source code for the program,

the intermediate representation
having been generated by lexically
analyzing the source code and
parsing output of said lexical
analysis,

such that when the program is
executed by a processor each
symbolic field reference is resolved
by determining a numerical
reference corresponding to the
symbolic field reference and data is
obtained in accordance with the
numerical reference without

See the discussion of claims 19 and 20 above.

For reasons stated above, such a claim also would have
been obvious.

Application/Control Number: 90/011,490

Art Unit; 3992

Page 29

’104 Patent

’678 Patent

recompiling the program or any
portion thereof.

22. An apparatus comprising:

a memory containing a compiled
program in intermediate form
object code constituted by a set of
instructions, at least one of the
instructions containing a symbolic
reference; and

a processor configured to execute
the instruction by determining a
numerical reference corresponding
to the symbolic reference, and

| performing an operation in
accordance with the instruction and
data obtained in accordance with
the numerical reference without
recompiling the program or any
portion thereof.

See the discussion of claim 20 above.

As noted above, the optimizing compiler disclosed in the
’678 patent is computer-implemented, and the compilation
process and execution of the generated code, as discussed
above, inherently require a processor and memory to
realize the described functionality. See, e.g., 678 patent
at col. 16, line 62, through col. 17, line 11.

For reasons stated above, such a claim also would have
been obvious.

23. A computer-readable medium
containing instructions for
controlling a data processing
system to perform a method for
interpreting a compiled program in
intermediate form object code
comprised of instructions, at least
one of the instructions containing a
symbolic reference, said method
comprising the steps of:

resolving the symbolic reference in
the instruction by determining a
numerical reference corresponding
to the symbolic reference; and

performing an operation in
accordance with the instruction and
data obtained in accordance with
the numerical reference without

See the discussion of claim 20 above.

A computer-readable medium, e.g., a memory containing
instructions, is inherent in realizing the disclosed
functionality discussed above.

For reasons stated above, such a claim also would have
been obvious.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 30

’104 Patent

’678 Patent

recompiling the program or any
portion thereof.

27. A computer-implemented
method comprising:

receiving a program with a set of
original instructions written in an
intermediate form code;

generating a set of new instructions
for the program that contain
numeric references resulting from
invocation of a routine to resolve
any symbolic data references in the
set of original instructions; and

executing the program using the set
of new instructions.

“The register allocation phase of the compiler stands
between the optimization phase and the final code
assembly and emission phase. When the intermediate or
internal language (IL) enters register allocation, it is
written assuming a hypothetical target machine having an
unlimited number of high-speed general-purpose CPU
registers.” ’678 patent at col. 4, lines 49-55.

The intermediate language code of the *678 patent
corresponds to the claimed intermediate form code. It is
received by the register allocation portion of the
optimizing compiler.

The original instructions in the intermediate form code .
contain symbolic registers, which correspond to the
claimed symbolic data references:

“It is the responsibility of the register allocation phase to
map the unlimited number of symbolic registers assumed
during optimization into the 32 registers which are
actually present in the CPU.” *678 patent at col. 4, lines
57-61.

A set of new instructions is generated that contains rea/
machine register numbers, which correspond to the
claimed numeric references:

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in the input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.’”
’678 patent at col. 9, lines 47-52.

The register allocation process illustrated in Figs. 3 and 4
of the *678 patent correspond to the claimed routine to
resolve any symbolic data references in the set of original
references.

The optimizing compiler disclosed in the '678 patent is

Application/Control Number: 90/011,490 | Page 31

Art Unit: 3992

’104 Patent

’678 Patent

computer-implemented. See, e.g., ’678 patent at col. 16,
line 62, through col. 17, line 11.

The *678 patent teaches that the output of the register
allocation process is modified intermediate language code,
which may be subsequently passed to the final code
assembly and emission phase of the optimizing compiler
to produce object code. See, e.g., 678 patent at col. 4,
lines 49-51; col. 4, lines 5-11 col. 17, lines 21-31.

The *678 patent further teaches that the purpose of an
optimizing compiler is “to facilitate the use of very high
level source program languages on the input side and to,
hopefully, assure that the object program produced by the
compiler will run on the target CPU in the most efficient
manner possible. *678 patent at col. 1, lines 29-36.

In view of the teachings and expressed purpose cited
above, it would have been obvious to one of ordinary skill
in the art at the time of invention to execute the program
using the set of new instructions in order to meaningfully
enjoy the benefits of the optimized output.

28. A data processing system,
comprising:

a processor; and

a memory comprising a control
program for causing the processor
to

(1) receive a program with a set of
original instructions written in an
intermediate form code,

(i) generate a set of new
instructions for the program that
contain numeric references

resulting from invocation of a
routine to resolve any symbolic data
references in the set of original
instructions, and

See the discussion of claim 27 above.

The compilation process and execution of the generated
code, as discussed above, inherently require a processor
and memory to realize the described functionality.

For reasons stated above, such a claim also would have
been obvious,

Application/Control Number: 90/011,490

Art Unit: 3992

Page 32

’104 Patent

’678 Patent

(iii) executing the program using
the set of new instructions.

29. A computer program product
containing instructions for causing
a

computer to perform a method, the
method comprising:

receiving a program with a set of
original instructions written in an
intermediate form code;

generating a set of new instructions
for the program that contain
numeric references resulting from
invocation of a routine to resolve
any symbolic data references in the
set of original instructions; and

executing the program using the set
of new instructions.

See the discussion of claim 27 above.

A computer program product, e.g., a mémory containing
instructions, is inherent in realizing the disclosed
functionality discussed above.

For reasons stated above, such a claim also would have
been obvious.

30. A computer-implemented
method comprising:

receiving a program that comprises
a set of instructions written in an
intermediate form code;

replacing each instruction in the
program with a symbolic data
reference with a new instruction
containing a numeric reference
resulting from invocation of a
dynamic field reference routine to
resolve the symbolic data reference;
and

executing the program by
performing an operation in
accordance with each instruction or

“The register allocation phase of the compiler stands
between the optimization phase and the final code
assembly and emission phase. When the intermediate or
internal language (IL) enters register allocation, it is
written assuming a hypothetical target machine having an
unlimited number of high-speed general-purpose CPU
registers.” ’678 patent at col. 4, lines 49-55.

The intermediate language code of the 678 patent
corresponds to the claimed intermediate form code. 1t is
received by the register allocation portion of the
optimizing compiler.

The original instructions in the intermediate form code
contain symbolic registers, which correspond to the
claimed symbolic data references:

“It is the responsibility of the register allocation phase to
map the unlimited number of symbolic registers assumed

Application/Control Number: 90/011,490 Page 33

Art Unit: 3992

’104 Patent

’678 Patent

new instruction, depending upon
whether an instruction has been
replaced with a new instruction in
accordance with the replacing step.

during optimization into the 32 registers which are
actually present in the CPU.” ’678 patent at col. 4, lines
57-61.

The instructions containing symbolic references are
replaced with instructions that contain real machine
register numbers, which correspond to the claimed
numeric references: '

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in the input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.””
’678 patent at col. 9, lines 47-52.

The register allocation process illustrated in Figs. 3 and 4
of the *678 patent correspond to the claimed dynamic field
reference routine to resolve the symbolic data reference.

The optimizing compiler disclosed in the *678 patent is
computer-implemented. See, e.g., ’678 patent at col. 16,
line 62, through col. 17, line 11.

The *678 patent teaches that the output of the register
allocation process is modified intermediate language code,
which may be subsequently passed to the final code
assembly and emission phase of the optimizing compiler
to produce object code. See, e.g., *678 patent at col. 4,
lines 49-51; col. 4, lines 5-11 col. 17, lines 21-31.

The ’678 patent further teaches that the purpose of an
optimizing compiler is “to facilitate the use of very high
level source program languages on the input side and to,
hopefully, assure that the object program produced by the
compiler will run on the target CPU in the most efficient
manner possible. 678 patent at col. 1, lines 29-36.

In view of the teachings and expressed purpose cited
above, it would have been obvious to one of ordinary skill
in the art at the time of invention to execute the program
in accordance with the replaced instructions in order to
meaningfully enjoy the benefits of the optimized output.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 34

’104 Patent

’678 Patent

31. A data processing system,
comprising:

a processor, and

a memory comprising a control
program for causing the processor
to

(i) receive a program that comprises
a set of instructions written in an
intermediate form code,

(ii) replace each instruction in the
program with a symbolic data
reference with a new instruction
containing a numeric reference
resulting from invocation of a
dynamic field reference routine to
resolve the symbolic data reference,
and

(iii) execute the program by
performing an operation in
accordance with each instruction or
new instruction, depending upon
whether an instruction has been
replaced with a new instruction in
accordance with the replacing step.

See the discussion of claim 30 above.

The compilation process and execution of the generated
code, as discussed above, inherently require a processor
and memory to realize the described functionality.

For reasons stated above, such a claim also would have
been obvious.

32. A computer program product
containing control instructions for
causing a computer to perform a
method, the method comprising:

receiving a program that comprises
a set of instructions written in an
intermediate form code;

replacing each instruction in the
program with a symbolic data -

See the discussion of claim 30 above.

A computer program product, e.g., a memory containing
instructions, is inherent in realizing the disclosed
functionality discussed above.

For reasons stated above, such a claim also would have
been obvious.

reference with a new instruction

Application/Control Number: 90/011,490

Art _Unit: 3992

Page 35

’104 Patent

’678 Patent

containing a numeric reference
resulting from invocation of a
dynamic field reference routine to
resolve the symbolic data reference;
and

executing the program by
performing an operation in
accordance with each instruction or
new instruction, depending upon
whether an instruction has been
replaced with a new instruction in
accordance with the replacing step.

33. A computer-implemented
method, comprising:

receiving a program with a set of
instructions written in an
intermediate form code;

analyzing each instruction of the
program to determine whether the
instruction contains a symbolic
reference to a data object; and

executing the program, wherein
when it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used
thereafter to perform an operation
corresponding to that instruction.

“The register allocation phase of the compiler stands
between the optimization phase and the final code
assembly and emission phase. When the intermediate or
internal language (IL) enters register allocation, it is
written assuming a hypothetical target machine having an
unlimited number of high-speed general-purpose CPU
registers.” ’678 patent at col. 4, lines 49-55.

The intermediate language code of the *678 patent
corresponds to the claimed intermediate form code. It is
received by the register allocation portion of the
optimizing compiler.

The instructions in the intermediate form code contain
symbolic registers, which correspond to the claimed
symbolic references:

“It is the responsibility of the register allocation phase to
map the unlimited number of symbolic registers assumed
during optimization into the 32 registers which are
actually present in the CPU.” 678 patent at col. 4, lines
57-61.

Each instruction is analyzed to determine whether the
instruction contains a symbolic reference to a data object:

“The first step in processing the program involves using
well-known optimizing compiler techniques to do a global
data-flow analysis. Which symbolic registers are live at

Application/Control Number: 90/011,490 = . Page 36

Art Unit: 3992

’104 Patent

’678 Patent

each point in the IL program must be known. This is done
by indicating at the beginning of each basic block which
computations are live going into it, and by marking each
operand of each instruction in the IL to indicate if it goes
dead.” 678 patent at col. 5, lines 13-20.

A set of new instructions is generated (and stored) that
contains real machine register numbers, which
correspond to the claimed numeric references:

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in the input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.’”
’678 patent at col. 9, lines 47-52.

The *678 patent teaches that the output of the register
allocation process is modified intermediate language code,
which may be subsequently passed to the final code
assembly and emission phase of the optimizing compiler
to produce object code. See, e.g., 678 patent at col. 4,
lines 49-51; col. 4, lines 5-11 col. 17, lines 21-31.

The 678 patent further teaches that the purpose of an
optimizing compiler is “to facilitate the use of very high
level source program languages on the input side and to,
hopefully, assure that the object program produced by the
compiler will run on the target CPU in the most efficient
manner possible. *678 patent at col. 1, lines 29-36.

The 678 patent further teaches that real machine registers
are used to obtain data during program execution. See,
e.g., '678 patent at col. 1, lines 36-43; col. 4, lines 12-33.

In view of the teachings and expressed purpose cited
above, it would have been obvious to one of ordinary skill
in the art at the time of invention to execute the program
using the set of new instructions, thereby obtaining data in
accordance to the numerical references, in order to
meaningfully enjoy the benefits of the optimized output.

The optimizing compiler disclosed in the *678 patent is

Application/Control Number: 90/011,490

Art Unit: 3992

Page 37

’104 Patent

’678 Patent

computer-implemented, and the compilation process and
execution of the generated code, as discussed above,
inherently require a processor and memory to realize the
described functionality. See, e.g., 678 patent at col. 16,
line 62, through col. 17, line 11.

34. A data processing system,
comprising:

a processor; and

a memory comprising a control
program for causing the processor
to

(i) receive a program with a set of
instructions written in an
intermediate form code,

(ii) analyze each instruction of the
program to determine whether the
instruction contains a symbolic
reference to a data object, and

(iii) execute the program, wherein
when it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used
thereafter to perform an operation
corresponding to that instruction.

See the discussion of claim 33 above.

For reasons stated above, such a claim also would have
been obvious.

35. A computer program product
containing control instructions for
causing a computer to perform a
method, the method comprising:

receiving a program with a set of
instructions written in an
intermediate form code;

See the discussion of claim 33 above.

A computer program product, e.g., a memory containing '
instructions, is inherent in realizing the disclosed
functionality discussed above.

For reasons stated above, such a claim also would have
been obvious.

Application/Control Number: 90/011,490 Page 38
Art Unit: 3992
’104 Patent ’678 Patent

analyzing each instruction of the
program to determine whether the
instruction contains a symbolic
reference to a data object; and

executing the program, wherein
when it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used
thereafter to perform an operation
corresponding to that instruction.

36. A computer-implemented
method for executing a program
comprised of bytecodes, the method
comprising:

determining whether a bytecode of
‘the program contains a symbolic
reference;

when it is determined that the
bytecode contains a symbolic
reference, invoking a dynamic field
reference routine to resolve the
symbolic reference; and

performing an operation identified
by the bytecode thereafter using
data from a storage location
identified by a numeric reference
resulting from the invocation of the
dynamic field reference routine.

“The register allocation phase of the compiler stands
between the optimization phase and the final code
assembly and emission phase. When the intermediate or
internal language (IL) enters register allocation, it is
written assuming a hypothetical target machine having an
unlimited number of high-speed general-purpose CPU
registers.” ’678 patent at col. 4, lines 49-55.

The intermediate language code of the *678 patent
corresponds to the claimed program comprised of
bytecodes.

The instructions in the intermediate form code contain
symbolic registers, which correspond to the claimed
symbolic references:

“It is the responsibility of the register allocation phase to
map the unlimited number of symbolic registers assumed
during optimization into the 32 registers which are
actually present in the CPU.” ’678 patent at col. 4, lines
57-61.

The ’678 patent further teaches analyzing each bytécode
instruction to determine whether the instruction contains a

symbolic reference to a data object:

“The first step in processing the program involves using

well-known optimizing compiler techniques to do a global

Application/Control Number: 90/011,490 Page 39

Art Unit: 3992

’104 Patent

’678 Patent

data-flow analysis. Which symbolic registers are live at
each point in the IL program must be known. This is done
by idicating at the beginning of each basic block which |
computations are live going into it, and by marking each
operand of each instruction in the IL to indicate if it goes
dead.” ’678 patent at col. 5, lines 13-20.

The register allocation process illustrated in Figs. 3 and 4
of the *678 patent correspond to the claimed dynamic field
reference routine to resolve the symbolic reference.

A set of new instructions is generated (and stored) that
contains real machine register numbers, which
correspond to the claimed numeric references:

“The procedure then continues to block 34 wherein the
complete intermediate language program is rewritten
replacing all symbolic register in the input intermediate
language program by real machine register numbers and
the procedure exits via the other arrow marked ‘end.’”
’678 patent at col. 9, lines 47-52.

The *678 patent teaches that the output of the register
allocation process is modified intermediate language code,
which may be subsequently passed to the final code
assembly and emission phase of the optimizing compiler
to produce object code. See, e.g., *678 patent at col. 4,
lines 49-51; col. 4, lines 5-11 col. 17, lines 21-31.

The *678 patent further teaches that the purpose of an
optimizing compiler is “to facilitate the use of very high
level source program languages on the input side and to,
hopefully, assure that the object program produced by the
compiler will run on the target CPU in the most efficient
manner possible. '678 patent at col. 1, lines 29-36.

The *678 patent further teaches that real machine registers
are used to obtain data during program execution. See,
e.g., 678 patent at col. 1, lines 36-43; col. 4, lines 12-33.

In view of the teachings and expressed purpose cited
above, it would have been obvious to one of ordinary skill
in the art at the time of invention to execute the program

Application/Control Number: 90/011,490

Art Unit: 3992

Page 40

’104 Patent

2678 Patent

using the set of new instructions, obtaining data in
accordance to the numerical references, in order to
meaningfully enjoy the benefits of the optimized output.

The claimed performing an operation identified by the
bytecode would take place once the compiled program of
the 678 patent is executed and any register assignments
and spill code would be used in the form outputted by the
final assembly and emission phase, i.e., after all
compilation is finished. See *678 patent at col. 4, line 49,
through col. 5, line 4. Therefore, the execution of the
final program would be thereafter using data from a
storage location identified by a numeric reference
resulting from the invocation of the dynamic field
reference routine.

The optimizing compiler disclosed in the *678 patent is
computer-implemented, and the compilation process and
execution of the generated code, as discussed above,
inherently require a processor and memory to realize the
described functionality. See, e.g., 678 patent at col. 16,
line 62, through col. 17, line 11.

37. A data processing system,
comprising:

a processor; and.

a memory comprising a program
comprised of bytécodes and

| instructions for causing the
processor to -

(i) determine whether a bytecode of

the program contains a symbolic
reference,

(ii) when it is determined that the
bytecode contains a symbolic
reference, invoke a dynamic field
reference routine to resolve the
symbolic reference, and

See the discussion of claim 36 above.

For reasons stated above, such a claim also would have
been obvious.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 41

’104 Patent

’678 Patent

(iii) perform an operation identified
by the bytecode thereafter using
data from a storage location
identified by a numeric reference
resulting from the invocation of the
dynamic field reference routine.

38. A computer program product
containing instructions for causing
a computer to perform a method for
executing a program comprised of
bytecodes, the method comprising:

determining whether a bytecode of
the program contains a symbolic
reference;

when it is determined that the
bytecode contains a symbolic
reference, invoking a dynamic field
reference routine to resolve the
symbolic reference; and

performing an operation identified
by the bytecode thereafter using
data from a storage location
identified by a numeric reference
resulting from the invocation of the
dynamic field reference routine.

See the discussion of claim 36 above.

A computer program product, e.g., a memory containing
instructions, is inherent in realizing the disclosed
functionality discussed above.

For reasons stated above, such a claim also would have
been obvious.

39. A computer-implemented
method comprising:

receiving a program formed of
instructions written in an
intermediate form code compiled
from source code;

analyzing each instruction to
determine whether it contains a

symbolic field reference; and

executing the program by

See the discussion of claim 33 above.

The *678 patent further teaches the intermediate form

code being compiled from source code. ’678 patent at
col. 17, lines 3-9.

For reasons stated above, such a claim also would have
been obvious.

Application/Control Number: 90/011,490

Art Unit: 3992

Page 42

’104 Patent

’678 Patent

performing an operation identified
by each instruction, wherein data
from a storage location identified
by a numeric reference is thereafter
used for the operation when the
instruction contains a symbolic
field reference, the numeric
reference having been resolved
from the symbolic field reference.

40. A data processing system,
comprising:

a processor; and

a memory comprising a control
program for causing the processor
to

(i) receive a program formed of
instructions written in an
intermediate form code compiled
from source code,

(i1) analyze each instruction to
determine whether it contains a

symbolic field reference, and

(iii) execute the program by

performing an operation identified

by each instruction, wherein data
from a storage location identified
by a numeric reference is thereafter
used for the operation when the
instruction contains a symbolic
field reference, the numeric
reference having been resolved
from the symbolic field reference.

See the discussion of claim 39 above.

As noted above, The optimizing compiler disclosed in the
’678 patent is computer-implemented, and the compilation
process and execution of the generated code, as discussed
above, inherently require a processor and memory to
realize the described functionality. See, e.g., >678 patent
at col. 16, line 62, through col. 17, line 11.

For reasons stated above, such a claim also would have
been obvious.

41. A computer program product
containing control instructions for
causing a computer to perform a
method, the method comprising:

See the discussion of claim 39 above.

A computer program product, e.g., a memory containing
instructions, is inherent in realizing the disclosed

Application/Control Number: 90/011,490 Page 43
Art Unit: 3992

’104 Patent '678 Patent

functionality discussed above.
receiving a program formed of
instructions written in an For reasons stated above, such a claim also would have
intermediate form code compiled been obvious.

from source code;

analyzing each instruction to
determine whether it contains a
symbolic field reference; and

executing the program by
performing an operation identified
by each instruction, wherein data
from a storage location identified
by a numeric reference is used
thereafter for the operation when
the instruction contains a symbolic
field reference, the numeric
reference having been resolved
from the symbolic field reference.

Conclusion
In order to ensure fullA consideration of any amendments, affidavits or declarations, or
other documents as evidence of patentability, such documents must be submitted in response to
this Office action. Submissions after the next Office action, which is intended to be a final
action, will be governed by the requirements of 37 CFR 1.116, after final rejection and 37 CFR
41.33 after appeal, which will be strictly enforced.
Extensions of time under 37 CFR 1.136(a) will not be permitted in these proceedings

because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a

Application/Control Number: 90/011,490 Page 44
Art Unit: 3992

reexamination proceeding. Additionally, 35 U.S.C. 305 requires that reexamination proceedings
"will be conducted with special dispatch" (37 CFR 1.550(a)). Extension of time in ex parte
reexamination proceedings are provided for in 37 CFR 1.550(c).

The patent owner is reminded of the continuing responsibility under 37 CFR 1.565(a) to
apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving |
Patent No. RE38,104 throughout the course of this reexamination proceeding. The third party
requester is also reminded of the ability to similarly apprise the Office of any such activity or
proceeding throughput the course of this reexamination proceeding. See MPEP §§ 2207, 2282

and 2286.

Application/Control Number: 90/011,490
Art Unit: 3992

All correspondence relating to this ex parte reexamination proceeding should be directed:

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent & Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

By FAX to: (571) 273-9900 _
Central Reexamination Unit

By hand: Customer Service Window
Randolph Building

401 Dulany Street
Alexandria, VA 22314

Registered users of EFS-Web may alternatively submit such correspondence via the electronic

filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered

Any inquiry concerning this communication should be directed to Central Reexamination

Unit at telephone number (571) 272-7705.

/Eric B. Kiss/
Primary Examiner, Art Unit 3992

Conferees: /Mary Steelman/
Primary Examiner, Art Unit 3992

A

	2012-02-16 Reexam - Non-Final Action

